Quantification of cell size using temporal diffusion spectroscopy.
نویسندگان
چکیده
PURPOSE A new approach has been developed to quantify cell sizes and intracellular volume fractions using temporal diffusion spectroscopy with diffusion-weighted acquisitions. METHODS Temporal diffusion spectra may be used to characterize tissue microstructure by measuring the effects of restrictions over a range of diffusion times. Oscillating gradients have been used previously to probe variations on cellular and subcellular scales, but their ability to accurately measure cell sizes larger than 10 μm is limited. By combining measurements made using oscillating gradient spin echo (OGSE) and a conventional pulsed gradient spin echo (PGSE) acquisition with a single, relatively long diffusion time, we can accurately quantify cell sizes and intracellular volume fractions. RESULTS Based on a two compartment model (incorporating intra- and extracellular spaces), accurate estimates of cell sizes and intracellular volume fractions were obtained in vitro for (i) different cell types with sizes ranging from 10 to 20 μm, (ii) different cell densities, and (iii) before and after anticancer treatment. CONCLUSION Hybrid OGSE-PGSE acquisitions sample a larger region of temporal diffusion spectra and can accurately quantify cell sizes over a wide range. Moreover, the maximum gradient strength used was lower than 15 G/cm, suggesting that this approach is translatable to practical MR imaging.
منابع مشابه
Characterizing Tumor Response to Chemotherapy at Various Length Scales Using Temporal Diffusion Spectroscopy
Measurements of apparent diffusion coefficient (ADC) using magnetic resonance imaging (MRI) have been suggested as potential imaging biomarkers for monitoring tumor response to treatment. However, conventional pulsed-gradient spin echo (PGSE) methods incorporate relatively long diffusion times, and are usually sensitive to changes in cell density and necrosis. Diffusion temporal spectroscopy us...
متن کاملCharacterization of tissue structure at varying length scales using temporal diffusion spectroscopy.
The concepts, theoretical behavior and experimental applications of temporal diffusion spectroscopy are reviewed and illustrated. Temporal diffusion spectra are obtained using oscillating-gradient waveforms in diffusion-weighted measurements, and represent the manner in which various spectral components of molecular velocity correlations vary in different geometrical structures that restrict or...
متن کاملDifferentiation of glioblastoma multiforme from metastatic brain tumor using proton magnetic resonance spectroscopy, diffusion and perfusion metrics at 3 T
PURPOSE To assess the contribution of (1)H-magnetic resonance spectroscopy (1H-MRS), diffusion-weighted imaging (DWI), diffusion tensor imaging (DTI) and dynamic susceptibility contrast-enhanced (DSCE) imaging metrics in the differentiation of glioblastomas from solitary metastasis, and particularly to clarify the controversial reports regarding the hypothesis that there should be a significant...
متن کاملProlonged Release Evaluation of an Injectable Anticancer Drug using Human Serum Albumin Nanoparticle
Human serum albumin nanoparticles (HSA-NPs) were synthesized using the modified desolvation method. Fourier transform infrared spectroscopy (FT-IR), electronic absorption spectroscopy (UV-Vis), Zeta Sizer as well as field emission scanning electron microscope (FE-SEM) of the sample confirmed the formation of HSA NPs with an average size of 68 nm. The obtained results shown that HSA-NPs was succ...
متن کاملEarly Detection of Treatment-Induced Mitotic Arrest Using Temporal Diffusion Magnetic Resonance Spectroscopy12
PURPOSE A novel quantitative magnetic resonance imaging (MRI) method, namely, temporal diffusion spectroscopy (TDS), was used to detect the response of tumor cells (notably, mitotic arrest) to a specific antimitotic treatment (Nab-paclitaxel) in culture and human ovarian xenografts and evaluated as an early imaging biomarker of tumor responsiveness. METHODS TDS measures a series of apparent d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Magnetic resonance in medicine
دوره 75 3 شماره
صفحات -
تاریخ انتشار 2016